SACs phenomena in SiIV regions of 42 BeV stars

E. Lyratzi, E. Danezis, M. Stathopoulou, E. Theodossiou, D. Nikolaidis, C. Drakopoulos & A. Soulikias

University of Athens, School of Physics
Department of Astrophysics, Astronomy and Mechanics
Panepistimiopolis, Zografos 157 84
Athens – Greece

Abstract

In this paper we present a study of the UV SiIV resonance lines of 42 BeV stars’ spectra, using the model proposed by Danezis et al. (2002b, 2003). This model is based on the idea of independent density layers in the regions where the spectral lines that present SACs (DACs) are created. We calculated the apparent rotation (Vrot) and expansion/contraction velocities (Vexp) of these density regions, as well as their ξ value, which is an expression of the optical depth. We also present the relation among these parameters and their evolution with the spectral subtype.

Key words: early type stars, Be stars, ultraviolet spectra, DACs, SACs, SiIV

Introduction

The ultraviolet resonance lines of SiIV (λλ 1393.755, 1402.77 Å) arise from the transition 3s2S-3p2P0. This doublet is usually an intense feature in the spectra of early type stars and provides us with a useful tool for the study of the stellar atmosphere’s structure. Thus, it has been studied by many researchers. It has been proposed that the UV SiIV doublet is a great criterion for the spectral classification (Panek & Savage 1976, Henize et al. 1976, 1981, Walborn & Nichols-Bohlin 1987, Prinja 1990), as well as for the study of mass-loss (Snow & Marlborough 1976, Snow & Morton 1976, Lamers & Snow 1978, Hubeny et al. 1985, 1986) and superionization in the early-type stellar atmospheres (Hubeny et al. 1985, 1986).

Panek & Savage (1976) in their study of 118 OAO-2 spectra of O and B stars found that the UV SiIV lines’ strength depends on the spectral type and luminosity class. In the case of dwarfs, the SiIV feature increases in strength from O type stars, presents a maximum at B0-B1 and disappears when the B3 subtype is reached. Besides, the doublet gets stronger from dwarfs to supergiants.
Henize et al. (1976, 1981) found that the UV SiIV doublet appears stronger in the B0-B2 stars’ spectra than in the spectra of the same spectral type stars that present emission. By the time the B3 spectral subtype is reached, the SiIV resonance lines disappear. In the case of luminosity classes I to III, the SiIV lines are very strong and present emission among the O4-B0 supergiants, while their strength decreases and the emission disappears towards B3 supergiants. They considered the lack of SiIV emission in the B1 supergiants as a useful criterion for distinguishing them from earlier supergiants.

Lamers & Snow (1978) found that in the spectra of some B3V stars or later the shifted, circumstellar SiIV lines are present, while the photospheric component is absent. The shifted SiIV component is seen in stars as late as B5V. They also found that Be and shell stars present shifted components of SiIV lines.

Kondo et al. (1981) studied the binary system U Cephei, which consists of a B7V primary and a G8III-IV secondary. They reported variations of the total absorption, perhaps due to hot regions on the B star and gas streaming effects. By comparing with the far-UV spectra of B stars, they found that the SiIV and CIV doublet lines are too strong for a B7 star, while they are comparable to a B0-1 star.

Marlborough (1982) and Marlborough & Peters (1982) observed the UV SiIV doublet in the spectra of B5 stars. They also observed their appearance in stars as cool as B8. They reported variability of the lines’ strength, but found no evidence of their total disappearance. Finally, they found that the UV SiIV and CIV lines become fainter by the decrease of vsini and proposed that this may be due to the hot component of the circumstellar envelope not being distributed with spherical symmetry.

Henrichs et al. (1983) studied the UV spectra of the B0.5Ive star γ Cas and observed “narrow absorption components” of the SiIV, CIV and NV ions. They observed strong variations in the shape of these lines, with velocities between -650 and -1500 km/s. They proposed that successive expansion of the matter, which is assumed to be spherical symmetric, is responsible for the behavior of the narrow lines. They report that “these lines are formed in a rapidly expanding region of the stellar wind which has a higher density than the ambient “quiet” wind and which has resulted from an enhanced mass flux of the star during a short time”. Finally, they suggest that the appearance and variability of the high-velocity narrow absorption components are general properties of Be and other stars of early type and thus is a typical phenomenon for most OB stars.

Sadakane (1984) studied the spectra of the B star 36 Lyn and proposed that the SiIV and CIV resonance lines are formed in the hot outer atmosphere (chromosphere or corona).

Codina et al. (1984) suggested that as the resonance doublets of SiIV and CIV are asymmetric with extended blue wings, they probably indicate a tenuous expanding envelope. For the narrow absorption lines (SACs) of high ionized species such as SiIV, CIV and NV, they proposed that “they could originate in matter ejected occasionally by the star due to some kind of photospheric activity. In this line of thought, such an ejection is probably a localized phenomenon not associated with the whole surface of the star (blob)”. Concerning the “blobs”, they proposed that the gas inside them is probably hot, not necessarily in ionization equilibrium and that the ionization is caused by collisional processes.

Hubeny et al. (1985, 1986), found that the SiIV lines can be observed over the whole B spectral range. However, the “narrow components are observed only in B2 and earlier stars’ spectra, indicate strongly mass outflows and large velocity fields in
early B stars, but they are not indicators of superionization. They suggested that “it will be possible to explain the observed UV spectra of at least some Be stars as a superposition of the contributions from the stellar atmosphere, the variable subionized Be envelope, and in some cases also from the (still unknown) medium producing the narrow blue-shifted components of resonance lines and/or from a transition zone in the accretion disk in interacting binaries”.

Danezis (1984, 1986) and Danezis et al. (1991) studied the UV spectra of the gaseous envelope of AX Mon taken by the IUE satellite and noted that the absorption lines of many ionization potential ions (including SiIV), not only of those presenting P Cygni profile, are accompanied by two strong absorption components of the same ion and the same wavelength, shifted at different $\Delta \lambda$, in the violet side of each main spectral line. This means that the regions where these spectral lines are created are not continuous, but they are formed by a number of independent density layers of matter. These layers of matter can rotate and move with different apparent velocities of the order of 10 km/s, -75 km/s and -260 km/s.

The existence of satellite components in the UV spectrum of AX Mon has been detected also by Sahade et al. (1984) and Sahade & Brandi (1985). For the SiIV absorption components, they found velocities between the values of -200 and +120 km/s. Also, Hutsemekers (1985), in the UV spectrum of another Be star, HD 50138, noticed a number of satellite components that accompanied the main spectral lines.

Aydin et al. (1988) studied the UV spectra of the binary system β Lyr and proposed that the profiles of SiIV resonance lines are formed by the superposition of a stationary P Cygni profile indicating the velocity of -162 ± 2 km/s and a broad, less strong, symmetric emission, shifting back and forth through the orbital cycle. Such a result indicates that in the system “there are, at least, two high temperature regions, one close to the “unknown” companion to the B8II component and another one in the circumbinary region”. Finally, they observed some very sharp, undisplaced features (Hack et al., 1983) and they suggest that if some of them are created in the circumbinary envelope, they could indicate that, at a certain distance, the stellar wind in the system deaccelerates and when it merges with the interstellar medium, the velocities in both media have the same value.

Doazan et al. (1988) found that in the UV spectra of the B8Ve star HD 23862 the SiIV resonance lines are not detectable during the epoch of strong shell, while, when the shell spectrum vanishes, they are unambiguously identified, shifted at -52 ± 4 km/s. They argue with Hubeny et al. (1985) on the point that these superionized lines are produced by spurious effects due to blending of shell lines. They proposed that these superionized lines are always present, but difficult/impossible to detect, due to the shell lines.

Sapar & Sapar (1992) studied the UV spectra of η CMa and found that the SiIV resonance lines show changes in their profiles, suggesting the presence of some shell condensations moving with time-dependent radial velocities. They observed “blue-shifted satellite components belonging to expanding shell condensations”, with radial velocities -360 km/s, -180 km/s, -110 km/s and -30 km/s. They attributed the presence of strong unshifted resonance line components of SiIV to a hot circumstellar gas cloud. They concluded to such behavior being the result of “an extended expanding envelope having dense shells which move away from the star and have different velocities”.

Kempner & Richards (1999) studied the UV spectra of the binary system U Sag, which consists of a B8V primary and a G4IV secondary component. They proposed the existence of circumstellar material, as the SiIV resonance lines presented
an orbital variation in the shape of the asymmetric profiles and in the wavelength of
the lines' center. However, as the SiIV lines' profile is almost stable in time, the
structure of the circumstellar gas contributing to the ultraviolet emission must also be
stable in time.

Finally, Danezis et al. (2002) attributed many of the peculiarities occurring in
the spectra of Oe and Be stars to the existence of Satellite Absorption Components
(SACs). In order to study all the lines presenting SACs, they proposed a model for the
structure of the regions where the spectral lines that present SACs are created
(Danezis et al., 2002, 2003).

In this paper we present the proposed by Danezis et al. (2003) line function of
and we apply it to 42 BeV stars, in order to calculate the apparent rotation and
expansion/contraction velocities and an expression of the optical depth (ξ) of the
density regions where the UV SiIV resonance lines are created.

The model: Mathematical expression

Considering an area of gas consisting of i independent absorbing shells followed by a shell that both absorbs and emits and an outer shell of general absorption, we conclude to the function:

\[
I_i = \prod \left\{ \exp\left(-L_i \xi_j \right) + S_\lambda \left(1 - \exp\left(-L_e \xi_j \right) \right) \right\} \exp\left(-L_g \xi_j \right) \\
\]

where:
\(I_{0\lambda} \): the initial radiation intensity,
\(L_i, L_e, L_g \): are the distribution functions of the absorption coefficients \(k_{\lambda i}, k_{\lambda e}, k_{\lambda g} \) respectively. Each \(L \) depends on the values of the apparent rotation velocity as well as of the radial expansion/contraction velocity of the density shell, which forms the spectral line \((V_{\text{rot}}, V_{\text{exp}}) \),

\(\xi = \int_0^s \Omega \rho ds \) is an expression of the optical depth \(\tau \), where \(\Omega \): an expression of

\(k_0 \) and has the same units as \(k_\lambda \),

\(S_{\lambda e} \): the source function, which, at the moment when the spectrum is taken, is constant and

\(L = \sqrt{1 - \cos^2 \theta_0} \) if \(\cos \theta_0 < 1 \) and \(L = 0 \) if \(\cos \theta_0 \geq 1 \),

where \(\cos \theta_0 = \frac{-\lambda_0 + \sqrt{\lambda_0^2 + 4\Delta \lambda^2}}{2\Delta \lambda z_0} \), where \(20_0 \) is the angular width of the
equatorial disk of matter, \(\lambda_0 \) is the wavelength of the center of the spectral line and \(\lambda_0 = \lambda_{\text{lab}} + \Delta \lambda_{\text{exp}} \), with \(\lambda_{\text{lab}} \) being the laboratory wavelength of the spectral line produced by a particular ion and \(\Delta \lambda_{\text{exp}} \) the radial Doppler shift and

\[
\frac{\Delta \lambda_{\text{exp}}}{\lambda_{\text{lab}}} = \frac{V_{\text{exp}}}{c},
\]

\(z_0 = \frac{V_{\text{rot}}}{c} \), where \(V_{\text{rot}} \) is the apparent rotation velocity of the i density shell of

matter and
\[\Delta \lambda = |\lambda_i - \lambda_0|, \] where the values of \(\lambda_i \) are taken in the wavelength range we want to reproduce.

The spectral line’s profile, which is formed by the density shell of matter, must be accurately reproduced by the function \(e^{-L\xi} \) by applying the appropriate values of \(V_{\text{roti}}, V_{\text{expi}} \) and \(\xi_i \). Using the best model’s fit for a complex spectral line, we can calculate the apparent expansion/contraction \((V_{\text{expi}}) \) velocity, the apparent rotation velocity \((V_{\text{roti}}) \) and an expression of the optical depth \((\xi_i) \) of the region in which the main spectral line and its SACs are created.

The depth of the absorption lines, which arise from the proposed model, depends only on \(\xi \), while the height of the emission does not depend only on \(\xi_e \), but on \(S_{\lambda e} \) as well. For this reason, we name \(S_{\lambda e}\xi_e \) height of the emission and we use it in the case of the emission, in the same way as we use \(\xi \) in the case of the absorption. The equation \(S_{\lambda e}\xi_e = \int_0^s \Omega_e \rho_e ds \), which corresponds to the emission, has the same form as the equation \(\xi = \int_0^s \Omega \rho ds \), which corresponds to the absorption.

At this point we would like to point out that the calculated values of the apparent rotation and expansion/contraction velocities correspond to the regions, where the Satellite Absorption Components (SACs) are created, and not to the star. Specifically, these values correspond to the density regions (blobs, puffs, bubbles) which result when streams of matter are twisted and form strings that produce blobs, puffs or bubbles.
Data

The data we used are the SiIV resonance lines of 42 Be V stars. The stars’ spectrograms have been taken with IUE satellite and their spectral types have been taken by the SIMBAD database (Centre de Donnees Astronomiques de Strasbourg (CDS), Strasbourg, France). Our data are presented in table 1.

<table>
<thead>
<tr>
<th>Star</th>
<th>Spectral Type</th>
<th>Camera</th>
<th>Star</th>
<th>Spectral Type</th>
<th>Camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 206773</td>
<td>B0 V : pe</td>
<td>Swp 18753</td>
<td>HD 32343</td>
<td>B2.5 V e</td>
<td>Swp 06932</td>
</tr>
<tr>
<td>HD 200310</td>
<td>B1 V e</td>
<td>Swp 10853</td>
<td>HD 37967</td>
<td>B2.5 V e</td>
<td>Swp 21491</td>
</tr>
<tr>
<td>HD 212571</td>
<td>B1 V e</td>
<td>Swp 07009</td>
<td>HD 65875</td>
<td>B2.5 V e</td>
<td>Swp 06544</td>
</tr>
<tr>
<td>HD 35439</td>
<td>B1 V pe</td>
<td>Swp 07716</td>
<td>HD 187811</td>
<td>B2.5 V e</td>
<td>Swp 19937</td>
</tr>
<tr>
<td>HD 44458</td>
<td>B1 V pe</td>
<td>Swp 18306</td>
<td>HD 191610</td>
<td>B2.5 V e</td>
<td>Swp 08600</td>
</tr>
<tr>
<td>HD 200120</td>
<td>B1.5 V nne</td>
<td>Swp 09458</td>
<td>HD 208682</td>
<td>B2.5 V e</td>
<td>Swp 19935</td>
</tr>
<tr>
<td>HD 30076</td>
<td>B2 V e</td>
<td>Swp 20844</td>
<td>HD 20336</td>
<td>B2.5 V ne</td>
<td>Swp 19934</td>
</tr>
<tr>
<td>HD 32991</td>
<td>B2 V e</td>
<td>Swp 14840</td>
<td>HD 60855</td>
<td>B2/B3 V</td>
<td>Swp 21915</td>
</tr>
<tr>
<td>HD 50083</td>
<td>B2 V e</td>
<td>Swp 15958</td>
<td>HD 51354</td>
<td>B3 ne</td>
<td>Swp 16547</td>
</tr>
<tr>
<td>HD 58050</td>
<td>B2 V e</td>
<td>Swp 16536</td>
<td>HD 25940</td>
<td>B3 V e</td>
<td>Swp 07011</td>
</tr>
<tr>
<td>HD 164284</td>
<td>B2 V e</td>
<td>Swp 08614</td>
<td>HD 45725</td>
<td>B3 V e</td>
<td>Swp 28106</td>
</tr>
<tr>
<td>HD 41335</td>
<td>B2 V ne</td>
<td>Swp 08604</td>
<td>HD 183362</td>
<td>B3 V e</td>
<td>Swp 31218</td>
</tr>
<tr>
<td>HD 52721</td>
<td>B2 V ne</td>
<td>Swp 25377</td>
<td>HD 208057</td>
<td>B3 V e</td>
<td>Swp 05909</td>
</tr>
<tr>
<td>HD 58343</td>
<td>B2 V ne</td>
<td>Swp 08605</td>
<td>HD 205637</td>
<td>B3 V : p</td>
<td>Swp 07008</td>
</tr>
<tr>
<td>HD 148184</td>
<td>B2 V ne</td>
<td>Swp 07753</td>
<td>HD 217543</td>
<td>B3 V pe</td>
<td>Swp 31186</td>
</tr>
<tr>
<td>HD 194335</td>
<td>B2 V ne</td>
<td>Swp 19938</td>
<td>HD 22192</td>
<td>B5 V e</td>
<td>Swp 08593</td>
</tr>
<tr>
<td>HD 202904</td>
<td>B2 V ne</td>
<td>Swp 08601</td>
<td>HD 138749</td>
<td>B6 V nne</td>
<td>Swp 09124</td>
</tr>
<tr>
<td>HD 65079</td>
<td>B2 V ne…</td>
<td>Swp 53980</td>
<td>HD 192044</td>
<td>B7 V e</td>
<td>Swp 28251</td>
</tr>
<tr>
<td>HD 28497</td>
<td>B2 V : ne</td>
<td>Swp 08594</td>
<td>HD 22780</td>
<td>B7 V ne</td>
<td>Swp 20846</td>
</tr>
<tr>
<td>HD 45995</td>
<td>B2 V nne</td>
<td>Swp 09936</td>
<td>HD 18552</td>
<td>B8 V ne</td>
<td>Swp 55906</td>
</tr>
<tr>
<td>HD 10516</td>
<td>B2 V pe</td>
<td>Swp 08592</td>
<td>HD 199218</td>
<td>B8 V nne</td>
<td>Swp 30071</td>
</tr>
</tbody>
</table>

Spectral analysis of the SiIV resonance lines in the UV spectra of 42 Be V stars

Figures

In figures 1 and 2 we present the SiIV lines’ fittings of 10 BeV stars together with the normal B star’s HD 30836 SiIV profile, in order to indicate the blended lines and the intense appearance of the SACS. The thick line presents the observed spectral line’s profile and the thin one the model's fit. The dashed lines indicate the laboratory wavelengths of the SiIV resonance lines at $\lambda \lambda 1393.755, 1402.77$ Å.
Figure 1

HD 30836
B 2

HD 206773
B 0 V : pe

HD 200310
B 1 V e

HD 148184
B 2 V ne

HD 206682
B 2.5 V e
Figure 2

HD 51354
B 3 V ne

HD 217543
B 3 V pe

HD 22192
B 5 V e

HD 138749
B 6 V nne

HD 192044
B 7 V e

HD 199218
B 8 V nne
Diagram 1: Apparent rotation and expansion/contraction velocities of the first SAC as a function of the spectral subtype. As one can see, the first SAC’s rotation and expansion/contraction velocities present a uniform fluctuation around the values of 830 km/s and +31 km/s respectively.

Diagram 2: Apparent rotation and expansion/contraction velocities of the second SAC as a function of the spectral subtype. A uniform fluctuation is also presented in the second SAC’s rotation and expansion/contraction velocities around the values of 492 km/s and -131 km/s respectively.

Diagram 3: Apparent rotation and expansion/contraction velocities of the third SAC as a function of the spectral subtype. The third SAC’s rotation and expansion/contraction velocities fluctuate around the values of 285 km/s and -105 km/s respectively.
Diagram 4: Apparent rotation and expansion/contraction velocities of the fourth SAC as a function of the spectral subtype. The fourth SAC’s rotation and expansion/contraction velocities fluctuate around the values of 137 km/s and -54 km/s respectively.

Diagram 5: Apparent rotation and expansion/contraction velocities of the fifth SAC as a function of the spectral subtype. The fifth SAC’s rotation and expansion/contraction velocities fluctuate around the values of 51 km/s and -25 km/s respectively.

Diagram 6: Apparent rotation velocities of all the SACs as a function of the spectral subtype (presented separately). Five levels of rotation velocity are presented with the mean values of 830 km/s, 492 km/s, 285 km/s, 137 km/s and 51 km/s.
Diagram 7: Apparent expansion/contraction velocities of all the SACs as a function of the spectral subtype (presented separately). The values of the expansion/contraction velocity of all the SACs lie in the range between -306 km/s and +194 km/s.

Diagram 8: The ξ values of each SAC as a function of the spectral subtype. For the first SAC the values of ξ lie between 0.002 and 0.029, while for the second SAC and the third SAC the values of ξ lie mainly in the range, between 0.001 and 0.039. For the fourth and the fifth SAC the values of ξ present great dispersion and lie, mainly, in the range between 0.002 and 0.052.

Diagram 9: Values of the product of ξ and the apparent rotation velocities (Vrotξ) as a function of the spectral subtype, presented separately for each SAC. The product V_{rotξ} is an expression of the absorbed energy.
Diagram 10: Apparent rotation velocities of all the SACs as a function of the respective value of ξ. For small values of ξ (0.001-0.029) the rotation velocity lies in the range of 12 to 1110 km/s. As the value of ξ increases (0.030-0.065) the rotation velocity’s values lie in a smaller range between 40 and 500 km/s. It is apparent that most of the SACs present small values of ξ. The points with greater values of ξ correspond to the fourth and fifth SACs, as one can see in diagram 8.

Diagram 11: Expansion/contraction velocities of all the SACs as a function of the respective value of ξ. For small values of ξ (0.001-0.029) the expansion/contraction velocity lies, mainly, in the range of -306 to +194 km/s. As the value of ξ increases the expansion/contraction velocity’s values lie in a smaller range between -222 and +21 km/s.

Diagram 12: Expansion/contraction velocities of all the SACs as a function of the respective apparent rotation velocities. For the smaller values of the rotation velocity (12 - 560 km/s) the values of the expansion/contraction velocity lie in a small range between -306 and +118 km/s. As the rotation velocity increases (570 and 1110 km/s) the expansion/contraction velocity presents greater dispersion and lies between -608 and +192 km/s.
References

Hubeny, I., Stefl, S. & Harmanec, P.:1985, BAICz, 36, 214
Hubeny, I., Harmanec, P. & Stefl, S.:1986, BAICz, 37, 370
Sapar, L. & Sapar, A.:1992, BaltA, 1, 37