The study of the coronal and post- coronal regions of the moving atmosphere of the Oe star HD 93521

In the Fig. 1, 2 and 3 we present a spectral line from each of CIV, NV and NIV of the ion regions and the whole star. We consider that in each region there are some very small Gaussian thermal motions and other VSOPs which present in the spectra as very small peaks. In the graph below each profile we present the difference between the fit and the real spectral line.

The Gaussian - Rotational model

For our study we fixed in both radial and rotational models. The first is the rotational velocity of the spectral region that produces the spectral line and the second is the random velocities of the line, which makes thermal random motions. In this model we present a new approach, which describes both of these factors.

We consider that the area of gas, which creates a specific spectral line consists of independent absorption regions followed by independent regions that both absorb and emit and an outer absorbing region. We apply the method proposed by Dinesan et al. (1981) and Nikishov et al. (2006) on the outer part of the star HD 93521 and we examine the time variations of the physical parameters presented above.

The EUV - Data

This project is based on data of EUV from the satellite EUNSA.

The study of the coronal and post- coronal regions of the moving atmosphere of the Oe star HD 93521

In the Fig. 1, 2 and 3 we present a spectral line from each of CIV, NV and NIV of the ion regions and the whole star. We consider that in each region there are some very small Gaussian thermal motions and other VSOPs which present in the spectra as very small peaks. In the graph below each profile we present the difference between the fit and the real spectral line.

The Gaussian - Rotational model

For our study we fixed in both radial and rotational models. The first is the rotational velocity of the spectral region that produces the spectral line and the second is the random velocities of the line, which makes thermal random motions. In this model we present a new approach, which describes both of these factors.

We consider that the area of gas, which creates a specific spectral line consists of independent absorption regions followed by independent regions that both absorb and emit and an outer absorbing region. We apply the method proposed by Dinesan et al. (1981) and Nikishov et al. (2006) on the outer part of the star HD 93521 and we examine the time variations of the physical parameters presented above.

The EUV - Data

This project is based on data of EUV from the satellite EUNSA.

The study of the coronal and post- coronal regions of the moving atmosphere of the Oe star HD 93521

In the Fig. 1, 2 and 3 we present a spectral line from each of CIV, NV and NIV of the ion regions and the whole star. We consider that in each region there are some very small Gaussian thermal motions and other VSOPs which present in the spectra as very small peaks. In the graph below each profile we present the difference between the fit and the real spectral line.

The Gaussian - Rotational model

For our study we fixed in both radial and rotational models. The first is the rotational velocity of the spectral region that produces the spectral line and the second is the random velocities of the line, which makes thermal random motions. In this model we present a new approach, which describes both of these factors.

We consider that the area of gas, which creates a specific spectral line consists of independent absorption regions followed by independent regions that both absorb and emit and an outer absorbing region. We apply the method proposed by Dinesan et al. (1981) and Nikishov et al. (2006) on the outer part of the star HD 93521 and we examine the time variations of the physical parameters presented above.

The EUV - Data

This project is based on data of EUV from the satellite EUNSA.